Optimized Multiplicative Derivations in Close to Rings

${ }^{1}$ Bheema Nayak. K, ${ }^{2}$ Mesa Kalpana, ${ }^{3}$ Dasi Sandhya
${ }^{1}$ M. Sc-Mathametics, Jagruthi College, Nagarjuna University, Hyderabad, Telangana, India
${ }^{2}$ M.Tech., CSE, Asst. Professor, Department of Computer Science, Aarushi Group of Institutions, JNTU-H, Warangal, Telangana, India
${ }^{3}$ M.Sc Maths, Vignana Bharathi PG College, Kakatiya University, Warangal, Telangana, India

Abstract

In the present paper, we investigate the commutatively of 3-prime near-rings satisfying certain conditions and identities involving left generalized multiplicative derivations. Moreover, examples have been provided to justify the necessity of 3-primeness condition in the hypotheses of various results.

Keywords: 3-Primeness Condition, Hypotheses, Derivation, Nonzero Multiplicative Derivation

I. INTRODUCTION

Throughout the paper, N will denote a left near-ring. N is called a 3-prime near-ring if $x \mathrm{~N} y=\{0\}$ implies $x=0$ or $y=0$. N is called a semiprime nearring if $x \mathrm{~N} x=\{0\}$ implies $x=0$. A nonempty subset A of N is called a semigroup left ideal (resp. semigroup right ideal) if $\mathrm{N} \mathrm{A} \subseteq \mathrm{A}(r e s p . \mathrm{AN} \subseteq \mathrm{A})$ and if A is both a semigroup left ideal as well as a semigroup right ideal, it will be called a semigroup ideal of N . The symbol Z will denote the multiplicative center of N , that is, $Z=\{x \in \mathrm{~N} \mid x y$ $=y x$ for all $y \in \mathrm{~N}\}$. For any $x, y \in \mathrm{~N}$ the symbol $[x$, $y]=x y-y x$ stands for the multiplicative commutator of x and y, while the symbol xoy stands for $x y+y x$. An additive mapping $d: \mathrm{N} \rightarrow \mathrm{N}$ is called a derivation of N if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathrm{~N}$. The concept of derivation has been generalized in different directions by various authors (for reference see [1, 3, 9]). A map $d: \mathrm{N} \rightarrow$ N is called a multiplicative derivation of N if $d(x y)$ $=x d(y)+d(x) y$ holds for all $x, y \in \mathrm{~N}$. We, together
with M. Ashraf and A. Boua have generalized the notion of multiplicative derivation by introducing the notion of generalized multiplicative derivations in [1] as follows: A map $f: \mathrm{N} \longrightarrow \mathrm{N}$ is called a left generalized multiplicative derivation of N if there exists a multiplicative derivation d of N such that f $(x y)=x f(y)+d(x) y$ for all $x, y \in \mathrm{~N}$. The map f will be called a left generalized multiplicative derivation of N with associated multiplicative derivation d of N . Similarly a map $f: \mathrm{N} \rightarrow \mathrm{N}$ is called a right generalized multiplicative derivation of N if there exists a multiplicative derivation d of N such that f $(x y)=x d(y)+f(x) y$ for all $x, y \in \mathrm{~N}$. The map f will be called a right generalized multiplicative derivation of N with associated multiplicative derivation d of N . Finally, a map $f: \mathrm{N} \longrightarrow \mathrm{N}$ will be called a generalized multiplicative derivation of N if it is both a right as well as a left generalized multiplicative derivation of N with associated multiplicative derivation d of N. Note that if in the above definition both d and f are assumed to be additive mappings, then f is said to
be a generalized derivation with associated derivation d of N . The following example shows that there exists a left generalized multiplicative derivation which is not a right generalized multiplicative derivation. For more properties of generalized multiplicative derivations one can refer to [1].
Example 1.1. Let S be a zero-symmetric left nearring. Suppose that

$$
\mathrm{N}=\begin{gathered}
\square \square \\
\square \\
\square \\
\square
\end{gathered} 0
$$

It can be easily shown that N is a zero symmetric left near-ring with regard to matrix addition and matrix multiplication. Define d, f : $\mathrm{N} \longrightarrow \mathrm{N}$ such that

It can be easily proved that d is a multiplicative derivation of N and f is a left generalized multiplicative derivation of N with an associated multiplicative derivation d of N . But f is not a right generalized multiplicative derivation of N associated with multiplicative derivation d. It can be also verified that the maps d, f defined here are non-additive.

The study of commutativity of 3-prime nearrings was initiated by using derivations by H.E. Bell and G. Mason [6] in 1987. Subsequently a number of authors have investigated the
commutativity of 3-prime near-rings admitting different types of derivations, generalized derivations, generalized multiplicative derivations(for reference see $[1,3,4,5,6,7,8,9]$, where further references can be found). In the present paper, we have obtained the commutativity of 3-prime near-rings, equipped with left generalized multiplicative derivations and satisfying some differential identities or conditions.

II. Preliminary Results

In this section we give some well-known results and we add some new lemmas which will be used throughout the next section of the paper. The proofs of the Lemmas $2.1-2.4$ can be found in [6, 4], while those of Lemmas 2.5-2.7, can be found in [6, Lemma 1],[11,

Lemma 2.1] and [14, Lemma 2] respectively.

Lemma 2.1. Let N be a 3-prime near-ring. If $Z \backslash$ $\{0\}$ contains an element z for which $z+z \in Z$, then $(N,+)$ is abelian.

Lemma 2.2. Let N be a 3-prime near-ring. If $z \in Z$ $\backslash\{0\}$ and x is an element of N such that $x z \in Z$ or $z x \in Z$ then $x \in Z$.

Lemma 2.3. Let N be a 3-prime near-ring and A be nonzero semigroup ideal of N . Let d be a nonzero derivation on N . If $x \in \mathrm{~N}$ and $x d(\mathrm{~A})=\{0\}$, then $x=0$.
Lemma 2.4. Let N be a 3-prime near-ring. If N admits a nonzero derivation d for which $d(\mathrm{~A}) \subseteq Z$, then N is a commutative ring.

Lemma 2.5. Let N be a near-ring and d be a derivation on N . Then $(x d(y)+d(x) y) z=x d(y) z+$ $d(x) y z$ for all $x, y, z \in \mathrm{~N}$.

Lemma 2.6. A near-ring N admits a multiplicative derivation if and only if it is zerosymmetric.

Lemma 2.7 Let N be a near-ring with center Z and let d be derivation on N . Then $d(Z) \subseteq Z$.
Lemma 2.8. Let N be 3-prime near-ring. If N admits a left generalized multiplicative derivation f with associated multiplicative derivation d such that $f(u) v=u f(v)$ for all $u, v \in \mathrm{~N}$, then $d=0$.
Proof. We are given that $f(u) v=u f(v)$ for all u, $v \in \mathrm{~N}$. Now replacing v by $v w$, where $w \in \mathrm{~N}$, in the previous relation, we obtain that $f(u) v w=$ $u f(v w)$ i.e.; $f(u) v w=u(v f(w)+d(v) w)$. By using hypothesis we arrive at $u d(v) w=0$ i.e.; $u \mathrm{~N} d(v) w=\{0\}$. Now using the facts that $\mathrm{N} f=$ $\{0\}$ and N is a 3-prime near-ring, weobtain that $d(v) w=0$, for all $v, w \in \mathrm{~N}$. This shows that $d(v) w$ $=0$ i.e.; $d(\mathrm{~N}) \mathrm{N} w=\{0\}$. Again 3-primeness of N and $\mathrm{N} f=\{0\}$ force us to conclude that $d(\mathrm{~N})=$ $\{0\}$. We get $d=0$

III. Main Results

We facilitate our discussion with the following theorem.

Theorem 3.1. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of a 3-prime near-ring N such that $f([x, y])=0$ for all $x, y \in \mathrm{~N}$. Then N is a commutative ring.

Proof. Assume that $f([x, y])=0$ for all $x, y \in \mathrm{~N}$. Putting $x y$ in place of y, we obtain that $f([x, x y])$ $=f(x[x, y])=x f([x, y])+d(x)[x, y]=0$. Using hypothesis, it is clear that
$d(x) x y=d(x) y x$ for all $x, y \in \mathrm{~N}$. (3.1) Replacing y by $y r$ where $r \in \mathrm{~N}$ in (3.1) and using this relation again, we get $d(x) \mathrm{N}[x, r]=\{0\}$ for all $x, r \in \mathrm{~N}$. Hence by 3-primeness of N, for each $x \in \mathrm{~N}$ either $d(x)=0$ or $x \in Z$. Let $u \in \mathrm{~N}$. It is clear that either $d(u)=0$ or $u \in Z$. We claim that if $d(u)=$ 0 , then also $u \in Z$. Suppose on contrary i.e.; $u f \in Z$. Now in the present situation, we prove that $d(u v) 0$, for all $v \in \mathrm{~N}$. For otherwise, we have $d(u v)=0$ for all $v \in \mathrm{~N}$, which gives us $u d(v)+d(u) v=0$. This implies that $u d(v)=0$ for all $v \in \mathrm{~N}$. Replacing v by $v r$, where $r \in \mathrm{~N}$, in the previous relation and using the same again, we arrive at $u \mathrm{~N} d(r)=$ $\{0\}$. Using the facts that N is 3 -prime and $d 0$, we obtain that $u=0 \in Z$, which leads to a contradiction. Thus, we have seen that if $d(u)=$ 0 and $u f \in Z$, then there exists $v \in \mathrm{~N}$, such that $d(u v) f=0$ and obviously $v 0$. Since $u, v \in \mathrm{~N}$, we have $u v \in \mathrm{~N}$.

We obtain that either $d(u v)=0$ or $u v \in Z$. But as $d(u v) f=0$, we infer that $u v \in Z$. Next we claim that $v f \in Z$, for otherwise we have $u v r=r u v$ i.e.; $v[u, r]=0$ for all $r \in \mathrm{~N}$. This shows that $v \mathrm{~N}[u, r]$ $=\{0\}$. Now by 3-primeness of N , we conclude that $u \in Z$, as $v f=0$, leading to a contradiction. Including all the above arguments, we conclude that if $d(u)=0$ and $u f \in Z$, then there exists $v \in$ N , such that $d(u v) 0$ and $v f \in Z$. As $v f \in Z$, shows that $d(v)=0$. Finally, we get $d(u v)=u d(v)+d(u) v=$ $u 0+0 v=0$, leading to a contradiction again. We have proved that if $d(u)=0$, then also $u \in Z$ i.e.; N $\subseteq Z$. Thus we obtain that $N=Z$ i.e; N is a commutative near-ring. If $N=\{0\}$ then N is trivially a commutative ring. If $N f=\{0\}$ then there exists $0 x \in N$ and hence $x+x \in N=Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.

Theorem 3.2. Let f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of N such that $f[x, y]=$ $x^{k}[x, y] x^{l}, k, l$; being some given fixed positive integers, for all $x, y \in \mathrm{~N}$. Then N is a commutative ring.

Proof. It is given that $f[x, y]=x^{k}[x, y] x^{l}$, for all x, y $\in \mathrm{N}$. Replacing y by $x y$ in the previous relation, we obtain that $f[x, x y]=x^{k}[x, x y] x^{l}$, i.e.; $f(x[x, y])=$ $x^{k}(x[x, y]) x^{l}$. This implies that $x f[x, y]+d(x)[x, y]=$ $x^{k} x[x, y] x^{l}=x x^{k}[x, y] x^{l}=x f[x, y]$. Now we obtain that $d(x)[x, y]=0$ for all $x, y \in \mathrm{~N}$, which is same as the relation (3.1) of Theorem.
3.1. Now arguing in the same way as in the Theorem 3.1., we conclude that N is a commutative ring.

The following example shows that the restriction of 3-primeness imposed on the hypothe- ses of Theorems 3.1 and 3.2 is not superfluous.

Example 3.2. Consider the near-ring N , taken as in Example 1.1. N is not 3-prime and $(i) f([x, y])=$ 0 ,
(ii) $f[x, y]=x^{k}[x, y] x^{l}, k, l$; being some given fixed positive integers, for all $x, y \in \mathrm{~N}$.
However N is not a commutative ring.
Theorem 3.3. Let N be a 3 -prime near-ring. If N admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y])=[f(x), y]$ for all $x, y \in \mathrm{~N}$, or $(i i) f([x, y])=[x, f(y)]$, for all $x, y \in \mathrm{~N}$, then N is a commutative ring.

Proof. (i) Given that $f([x, y])=[f(x), y]$, for all x, y $\in \mathrm{N}$. Replacing y by $x y$ in the previous relation, we get $f([x, x y])=[f(x), x y]$ i.e.; $f(x[x, y])=[f(x), x y]$. This shows that $x f([x, y])+d(x)[x, y]=f(x) x y-x y f$ (x). Using the given condition and the fact that $[f(x)$,
$x]=0$, the previous relation reduces to $x(f(x) y-y f$ $(x))+d(x)[x, y]=x f(x) y-x y f(x)$. This gives us $d(x)[x, y]=0$, for all $x, y \in \mathrm{~N}$, which is the same as the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that N is a commutative ring.
(ii) We have $f([x, y])=[x, f(y)]$, for all $x, y \in \mathrm{~N}$.

Replacing x by $y x$ in the given condition, we obtain that $f([y x, y])=[y x, f(y)]$ i.e.; $f(y[x, y])=y x f(y)-f$ (y) $y x$. This gives us $y f([x, y])+d(y)[x, y]=y x f(y)$ $-f(y) y x$. With the help of the given condition and using the fact that $[f(y), y]=0$, previous relation reduces to $y x f(y)-y f(y) x+d(y)[x, y]=y x f(y)-y f(y) x$. As a result, we obtain that $d(y)[x, y]=0$ i.e.; $d(y)[y, x]$ $=0$. This implies that $d(x)[x, y]=0$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that N is a commutative ring.

Theorem 3.4. Let N be a 3-prime near-ring. If N admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either $(i) f([x, y])=[d(x), y]$ for all $x, y \in \mathrm{~N}$, or $(i i) d([x, y])=[f(x), y]$, for all $x, y \in$ N , then N is a commutative ring.

Proof. (i) We are given that $f([x, y])=[d(x), y]$. Replacing y by $x y$ in the previous relation we get $f([x$, $x y])=[d(x), x y]$. This relation gives $f(x[x, y])=[d(x)$, $x y]$ i.e.; $x f([x, y])+d(x)[x, y]=d(x) x y-x y d(x)$. Using the given condition and the fact that $[d(x), x]=$ 0 , we obtain that $x d(x) y-x y d(x)+d(x)[x, y]=x d(x) y$ $-x y d(x)$. Finally we get $d(x)[x, y]=0$, for all $x, y \in$ N , which is the same as the relation (3.1) of Theorem.
3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that N is a commutative ring.
(ii) We have $d([x, y])=[f(x), y]$. Putting $x y$ in the place of y in the previous relation we get $d([x, x y])=$ $[f(x), x y]$. This implies that $d(x[x, y])=f(x) x y-x y f$ (x) i.e.; $x d[x, y]+d(x)[x, y]=f(x) x y-x y f(x)$. Using the fact that $[f(x), x]=0$, we obtain that $x d[x, y]+$ $d(x)[x, y]=x f(x) y-x y f(x)$ i.e.; $x d[x, y]+d(x)[x, y]=x[f$ $(x), y]$. Now using the hypothesis, we get $x d[x, y]+$ $d(x)[x, y]=x d([x, y])$. Finally we have $d(x)[x, y]=0$, for all $x, y \in \mathrm{~N}$, which is identical with the relation (3.1) of Theorem 3.1. Now ar- guing in the similar way as in the Theorem 3.1., we conclude that N is a commutative ring.

Theorem 3.5. Let N be a 3-prime near-ring. If N admits a nonzero left generalized multiplicative derivation f with associated nonzero multiplicative derivation d such that either (i) f $([x, y])= \pm[x, y]$ for all $x, y \in \mathrm{~N}$, or $(i i) f([x, y])=$ \pm (xoy) for all $x, y \in \mathrm{~N}$, then under the condition (i) N is a commutative ring and under the condition (ii) N is a commutative ring of characteristic 2 .

Proof. Assume that condition (i) holds i.e.; $f([x, y])$ $= \pm[x, y]$ for all $x, y \in \mathrm{~N}$. Putting $x y$ in place of y, we obtain, $f([x, x y])=f(x[x, y])=x f([x, y])+d(x)[x$, $y]= \pm x[x, y]$. Using our hypothesis we get $d(x) x y=$ $d(x) y x$ for all $x, y \in \mathrm{~N}$, which is identical with the relation (3.1) of Theorem 3.1. Now arguing in the similar way as in the Theorem 3.1., we conclude that N is a commutative ring. Under the condition (ii), using similar arguments, it is easy to show that N a commutative ring. But now under this situation, condition (ii) reduces to $x o y=0$ for all $x, y \in \mathrm{~N}$ i.e.; $2 x y=0$. Suppose on contrary i.e.;
characteristic $N=2$. As N is a prime ring, N will be a 2-torsion free ring. Now we
get $x y=0$, for all $x, y \in \mathrm{~N}$ i.e.; $x \mathrm{~N} y=\{0\}$. Finally, we have $\mathrm{N}=\{0\}$, leading to a contradiction.

Theorem 3.6. Let N be a 3-prime near-ring. If N admits a nonzero left general- ized multiplicative derivation f with associated multiplicative derivation d such that $f(x y)= \pm(x y)$ for all $x, y \in \mathrm{~N}$, then $d=0$.

Proof. Let $f(x y)=x y$ for all $x, y \in \mathrm{~N}$. Putting $y z$, where $z \in \mathrm{~N}$ for y in the previous relation, we obtain that $f(x(y z))=x(y z)$ i.e.; $x f(y z)+d(x) y z=$ $x y z$.

Using the hypothesis we get $d(x) y z=0$ i.e.; $d(x) \mathrm{N}$ $z=\{0\}$. Since $N=\{0\}$, by 3-primeness of N, we get $d=0$. Similar arguments hold if $f(x y)=$ $-(x y)$ for all $x, y \in \mathrm{~N}$.

Very recently, Boua and Kamal [7, Theorem 1] proved that if N is a 3-prime near-ring, which admits nonzero derivations d_{1} and d_{2} such that $d_{1}(x) d_{2}(y) \in Z$, for all $x, y \in \mathrm{~A}$, where A is a nonzero semigroup ideal of N , then N is a commutative ring. Motivated by this result, we have obtained the following:

Theorem 3.7. Let N be a 3-prime near-ring and f be a nonzero left generalized multiplicative derivation with associated nonzero multiplicative derivation d of N such that either $(i) f(x) d(y) \in Z$, for all $x, y \in \mathrm{~N}$, or $(i i) d(x) f(y) \in Z$, for all $x, y \in \mathrm{~N}$ and d is a nonzero derivation of N . Then N is a commutative ring.

Proof. (i) We are given that $f(x) d(y) \in Z$, for all x, y $\in \mathrm{N}$. Replacing y by $y z$, where $z \in \mathrm{~N}$ in the previous relation, we get $f(x) d(y z) \in Z$. This implies that f
$(x)(y d(z)+d(y) z) \in Z$ i.e.; $f(x) y d(z)+f(x) d(y) z \in Z$. This gives us $(f(x) y d(z)+f(x) d(y) z) z=z(f(x) y d(z)$ $+f(x) d(y) z)$. Now using Lemma 2.5, we obtain that $f(x) y d(z) z+f(x) d(y) z z=z f(x) y d(z)+z f$ $(x) d(y) z$ for all $x, y, z \in \mathrm{~N}$. Using the hypothesis we infer that $f(x) y d(z) z+f(x) d(y) z^{2}=z f(x) y d(z)+f$ $(x) d(y) z^{2}$ i.e.; $f(x) y d(z) z=z f(x) y d(z)$. Putting $d(t) y$ for y, where $t \in \mathrm{~N}$ in the relation $f(x) y d(z) z=z f$ $(x) y d(z)$, we get $f(x) d(t) y d(z) z=z f(x) d(t) y d(z)$ and now us- ing the hypothesis again, we arrive at f $(x) d(t)(y d(z) z-z y d(z))$. This shows that $f(x) d(t) \mathrm{N}$ $(y d(z) z-z y d(z))=\{0\}$. Hence 3-primeness of N shows that either $f(x) d(t)=0$ or $y d(z) z-z y d(z)=$ 0 . We claim that $f(x) d(t) 0$ for all $x, t \in \mathrm{~N}$. For otherwise if $f(x) d(t)=0$ for all $x, t \in \mathrm{~N}$, we have $f(x) d(\mathrm{~N})=\{0\}$. Using Lemma 2.3, we find that $f(x)=0$ for all $x \in \mathrm{~N}$, leading to a contradiction. Thus there exist $x_{0}, t_{0} \in \mathrm{~N}$ such that $f\left(x_{0}\right) d\left(t_{0}\right) 0$. Hence, we arrive at $y d(z) z-$ $z y d(z)=0$ for all $y, z \in \mathrm{~N}$. Now replacing y by $y f$ (x), where $x \in \mathrm{~N}$ in the previous relation and using the hypothesis again, we get $f(x) d(z)(y z-$ $z y)=0$ i.e.; $f(x) d(z) \mathrm{N}(y z-z y)=\{0\}$. By hypothesis we have $f(\mathrm{~N}) f=\{0\}$, hence there exists $u_{0} \in \mathrm{~N}$ such that $f\left(u_{0}\right) f=0$. By Lemma 2.3, there exists $z_{0} \in \mathrm{~N}$ such that $f\left(u_{0}\right) d\left(z_{0}\right) f=0$ and hence obviously $d\left(z_{0}\right) f=$ QAgain 3-primeness of N and the relation $f(x) d(z) \mathrm{N}(y z-z y)=\{0\}$, ultimately give us $y z_{0}=z_{0} y$ for all $y \in \mathrm{~N}$. Now Lemma 2.5 insures that $z_{0} \in Z$ and using Lemma 2.7, we obtain that $d\left(z_{0}\right) \in Z$. Since $f\left(u_{0}\right) d\left(z_{0}\right) \in Z$ and $0 f$ $d\left(z_{0}\right) \in Z$, Lemma 2.2, implies that $f\left(u_{0}\right) \in Z$. Using the given hypothesis again we have $f\left(u_{0}\right) d(y) \in Z$. But $0 f\left(u_{0}\right) \in Z$, thus Lemma 2.2, shows that $d(\mathrm{~N})$ $\subseteq Z$. Finally the Lemma 2.4 , gives the required result.
(ii) Using the similar arguments as used in (i) with necessary variations, it can be easily shown that
under the condition $d(x) f(y) \in Z$, for all $x, y \in \mathrm{~N}, \mathrm{~N}$ is a commutative ring.

Theorem 3.8. Let N be a 3-prime near-ring and f be a left generalized multiplica- tive derivation of N such that either $(i) d(y) f(x)=[x, y]$, for all $x, y \in$ N , or (ii) $d(y) f(x)=-[x, y]$, for all $x, y \in \mathrm{~N}$ and d is a nonzero derivation of N . Then N is a commutative ring.

Proof. (i) We are given that $d(y) f(x)=[x, y]$, for all $x, y \in \mathrm{~N}$. (3.2) Case I: Let $f=0$. Under this condition the equation (3.2) reduces to $[x, y]=0$ for all $x, y \in \mathrm{~N}$. This implies that $x y=y x$, for all x, y $\in \mathrm{N}$. Replacing x by $x r$, where $r \in \mathrm{~N}$ in the previous relation and using the same relation again we arrive at $\mathrm{N}[r, y]=\{0\}$ i.e.; $[r, y] \mathrm{N}[r, y]=$ $\{0\}$. Now using 3-primeness of N, we conclude that $r \in Z$. This implies that $\mathrm{N} \subseteq Z$. If $N=\{0\}$, then N is trivially a commutative ring. If $N\{0\}$ then there exists $0 f=x \in N$ and hence $x+x \in N$ $=Z$. Now by Lemma 2.1; we conclude that N is a commutative ring.

Case II: Let $f 0$. Replacing y by $x y$ in the relation (3.2), we obtain that
$d(x y) f(x)=x[x, y]$ i.e.; $(x d(y)+d(x) y) f(x)=x[x, y]$. Using Lemma 2.5 and the relation (3.2), we arrive at $x d(y) f(x)+d(x) y f(x)=x d(y) f(x)$. This shows that $d(x) y f(x)=0$ i.e.; $d(x) \mathrm{N} f(x)=\{0\}$. Using 3primeness of N, we conclude that for any given x $\in \mathrm{N}$, either $d(x)=0$ or $f(x)=0$. If for any given x $\in \mathrm{N}, f(x)=0$, then relation (3.2) reduces to $[x, y]=$ 0 for all $y \in \mathrm{~N}$ i.e.; $x \in Z$. By Lemma 2.7, this shows that $d(x) \in Z$. Finally using both possibilities, we deduce that $d(\mathrm{~A}) \subseteq Z$. By Lemma 2.4 , we get our required result.

Using the similar arguments as used in (i), it can be easily proved that under the condition $d(y) f(x)=-[x$, $y]$, for all $x, y \in \mathrm{~N}, \mathrm{~N}$ is a commutative ring.

IV. REFERENCES

[1]. Ashraf, M., Boua, A., Siddeeque, M.A., Generalized multiplicative derivations in 3-prime near-rings, Mathematica Slovaca, (2017), (To appear).
[2]. Ashraf, M., Rehman, N., On commutativity of rings with derivations, Results Math, (2002), Vol. 42(1-2), 3-8.
[3]. Bell, H.E., On prime near-rings with generalized derivations, International Journal of Mathematics and Mathematical Sciences, (2008), Article ID 490316, 5 pages.
[4]. Bell, H.E., On derivations in near-rings II, Kluwer Academic Publishers Dordrecht, Vol. 426, (1997), 191-197.
[5]. Bell, H.E., Boua, A., Oukhtite, L., Semigroup ideals and commutativity in 3 -prime near-rings, Comm. Algebra, 43, (2015), 1757-1770.
[6]. Bell, H.E. and Mason, G., On derivations in nearrings, Near-rings and Near-fields (G. Betsch editor), North-Holland / American Elsevier, Amsterdam, 137, (1987), 31-35.
[7]. Boua, A., Kamal A.A.M., Some results on 3prime near-rings with derivations, Indian J. Pure Appl. Math., 47(4), (2016), 705-716.
[8]. Boua, A., Oukhtite, L., On commutativity of prime near-rings with derivations, South East Asian Bull. Math., 37, (2013), 325-331.
[9]. Golbasi., O., On generalized derivations of prime near-rings, Hacet. J. Math. \& Stat., 35(2), (2006), 173-180.
[10]. Havala, B., Generalized derivations in rings, Comm. Algebra, 26, 1147-1166, (1998).
[11]. Kamal, A.A.M. and Al-Shaalan, K. H., Existence of derivations on near-rings, Math.
[12]. Slovaca, 63(3), (2013), 431-448.
[13]. Meldrum, J.D.P., Near-rings and their links with groups, Res. Notes Math. 134, Pitman (Advanced Publishing Program), Bostan, M.A., (1985).
[14]. Pilz, G., Near-rings, 2nd ed., 23, North Holland American Elsevier, Amsterdam, (1983).
[15]. Wang, X.K., Derivations in prime near-rings, Proc. Amer. Math. Soc., 121, No.(2), (1994), 361 - 366.

